Modified IEEE 123-Bus Test Power Distribution System for Hierarchical Energy Storage Operation

The IEEE 123-bus test power distribution system¹ is slightly modified and a tie-switch between buses 16 and 95 is added to the original network, in order to provide enough reconfiguration options. The system is divided to 6 zones, as shown in Fig. 1, where each zone has its own energy storage (ES) and photovoltaic (PV) unit, with the data given in Table 1.

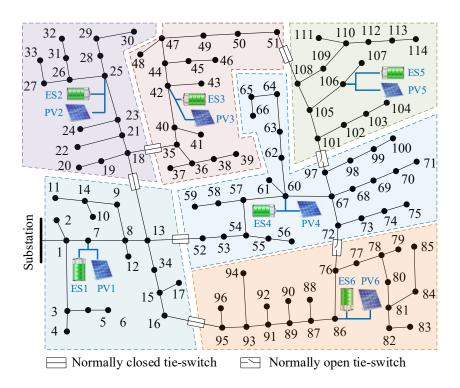


Fig. 1: Modified IEEE 123-bus test power distribution system divided to 6 operational zones

Zone	1	2	3	4	5	6
ES capacity (kWh)	1000	1000	2000	2000	1000	2000
ES power rate (kW)	250	250	500	500	250	500
PV power rate (kW)	130	125	250	300	125	250

Table 1: ES and PV capacity data for each zone of the system

All data are provided in the accompanying database file *DB_123bus_Hierarchical_ES.xlsx*, which include the following data tabs:

^{1.} https://site.ieee.org/pes-testfeeders/resources/

- Historical data
 - Date and hour
 - Operational zone
 - o Load
 - Load forecast
 - Locational Marginal Price (LMP)
 - o LMP forecast
 - Solar generation
 - Solar generation forecast
- 123Bus System Line Data
 - Line resistance
 - Line reactance
 - Line capacity
 - Per unit values
- 123Bus System Load Data
 - Active demand of buses
 - Reactive demand of buses

For the real-time and 24-hour forecast of load and LMP (data Load, Load forecast, LMP and LMP forecast in the data file), the NYISO 2017-2018 hourly data² obtained for six of its operational zones are used. The load profiles to zones 1 to 6 of the 123-bus test system are assigned respectively, and are normalized to the total demand in each zone.

For solar generation data, the National Solar Radiation DataBase (NSRDB)³ is used to extract hourly Global Horizontal Irradiation (GHI) index in 2017-2018 in Manhattan, NY, by which a solar generation profile is created and normalized for each zone based on its PV power rate given in Table I. The solar generation forecast data are generated assuming a normal distribution for the solar generation forecast error with $\mu = 0$, $\sigma = 5$. The data from 2017 is used for training the intelligent controller, which is then tested on 24 randomly selected days of 2018.

^{3.} https://maps.nrel.gov/nsrdb-viewer/

^{2.} http://https://www.nyiso.com/energy-market-operational-data