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Abstract—The current discrete-time (e.g., hourly) modeling
and prediction methods fall short in capturing and anticipating
the sub-interval variations of electricity load. This leads to
inability of power system operators to appropriately utilize
the available resources to follow and compensate the load
variations. This paper takes a novel and different approach
on modeling electricity load, and proposes a continuous-time
model for characterizing the uncertainty and variability of load.
More specifically, the electricity load is modeled as a continuous-
time stochastic process that is projected on a reduced-order
function space spanned by Bernstein polynomials, which ensures
the continuity of the process over the estimation and forecasting
horizons. We assume a Gaussian process (GP) prior on the
load process and design a covariance function that reflects
the periodicity and smoothness of electricity load. We develop
a computationally efficient method for estimating the hyper-
parameters of the model using the solution of a maximum
likelihood estimation problem and form the posterior GP process.
The proposed method is utilized to model and predict the load of
California Independent System Operator (CAISO). The proposed
model uniquely predicts the continuous-time mean value and
uncertainty envelopes of future CAISO load, which inherently
embeds information on the continuous-time variations and the
associated ramping requirements of the load.

I. INTRODUCTION

A. Background on Load Modeling and Prediction

Electricity load modeling and prediction is a fundamental
stage of power systems operation and exploring mathematical
load modeling techniques dates back to decades earlier [1]. Re-
markable efforts in this realm have culminated in developing
several load forecasting methods among them the linear regres-
sion, stochastic time series, exponential smoothing, artificial
neural networks (ANN), and Gaussian process (GP) predictors
[2], [3]. These methods cover a wide range of modeling time-
scales from short-term to medium- and long-term, where our
focus in this work is the short-term load model.

The linear regression methods offer more simplicity as
compared to the other methods, and their flexibility is com-
mensurate with the richness of opted functions [1], [4]. Richer
functions, however, do not necessarily guarantee the accuracy
of modeling and prediction, specifically in the presence of
high noise levels. In fact, excessively complex functions may
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perform well in modeling the observed data, though they
may suffer from overfitting [5] that brings about considerable
prediction errors. The stochastic time series models, including
autoregressive moving average and autoregressive integrated
moving average [6]–[8], alleviate to some extent the overfitting
problem and reflect implicitly the correlation of forecasted
data through the feedback of time-lagged load values and
the associated error terms. Exponential smoothing methods
assign exponentially decreasing factors to the time-lagged
components of time series, such that farther observations have
less impact on the present forecast [9], [10].

The ANN and GP predictors follow the principles of super-
vised learning [11]–[14]. In [12], the uncertainty intervals of
the predicted load points are also furnished as the outputs of
the ANN model, yet the covariance matrix of the forecasted
load points is not provided. The GP models assume a Gaussian
prior on the stochastic load process [13], [14], and derive the
Gaussian predictive distribution as the posterior distribution
of future load points. The predictive distribution not only
provides the pointwise load values, but also their covariance
matrix. Further, in derivation of GP predictors a compromise
between data-fit and complexity is inherently made through
the maximum likelihood problem, which alleviates to a good
extent the overfitting issue [13].

Several works have leveraged the appealing properties of
GP predictors to forecast electric load or wind power [15]–
[18]. In [15], the authors compare the performance of GP
and ANN models and showcase the computational merit of
the former over the latter. In [16], an ensemble prediction
model composed of 52 ANN and 5 GP sub-models are used
to forecast the 48 hour ahead wind power. The GP sub-models
serve as auxiliary predictors to provide initial points for the
main ANN models. In [17], a censored GP model is used along
with data from numerical weather prediction for mapping
wind speed values to wind turbines output power, taking into
account the wind direction, temperature, air pressure, and
humidity. The model in [18] utilizes a teaching learning based
optimization to accelerate the GP learning process.

B. Continuous-time Load Modeling

The load of power systems varies continuously in time,
and its variability and uncertainty is best characterized by a
continuous-time stochastic process. Integrating a continuous-
time load trajectory in power systems control and operation
problems, however, would result in a continuous-time optimal
control problem with infinite dimensional decision space that
is computationally intractable to solve. The common practice
to overcome this problem has been to divide the modeling
time horizon using a finite number of sampling points and
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approximate the continuous-time load trajectory with a zero-
order piecewise constant trajectory, as shown in Fig. 1-(a). This
time-discretization approach, though, does not appropriately
capture the load dynamics and variations in smaller time
scales, and neglects a great deal of prior information about the
load process. Increasing the accuracy of piecewise constant
load approximation would require an increasing number of
sampling points, which would in turn increase the dimension-
ality of the associated power system control problem that the
load is considered as an input to.

In a series of recent works, we have developed an alterna-
tive approach for sampling the load trajectories and control
decisions of the associated control problems in power systems
operation [19]–[23]. The approach projects the realizations of
load trajectory on a countable and finite-dimensional function
space, as schematically shown in Fig. 1-(b). In [19], [20], we
have shown that Bernstein polynomials represent a perfect
choice for modeling the load trajectory, and leveraged mul-
tiple properties of Bernstein polynomials (e.g., convex hull
property) for scalable and accurate solution of the associated
optimal control problems. However, in our past works (and
to the best of our knowledge in other works), the focus has
been on deterministic continuous-time representation of load
trajectories and the development of stochastic continuous-time
load models that would account for the inherent uncertainty
of load in a continuous-time fashion is remained unexplored.

C. Contribution and Paper Structure

In this paper, we expand the function space representation
of load trajectories using Bernstein polynomials in [19]–
[22], and develop a continuous-time stochastic process model
for electricity load. More specifically, the electricity load is
modeled in Section II as a continuous-time stochastic process
that is projected on a function space spanned by Bernstein
polynomials, where the projection coefficients are random
variables and form a multivariate probability distribution.
In Section III, we adapt the Bayesian inference method to
estimate the proposed load process using the past observations
of the load. We assume a GP prior on the stochastic load
process and design a covariance function that includes a
periodic squared exponential and a pure squared exponential
kernel function. We then estimate the hyper-parameters of the
model using the solution of a maximum likelihood estimation
problem and form the posterior GP model. The posterior GP
model is then utilized to develop the predictive process that
predicts the mean and covariance of future load process. The
proposed continuous-time GP load model is utilized in Section
IV to develop a model for the real load data of California
Independent System Operator (CAISO), and predict the future
load values. The conclusions are drawn in Section V.

II. FUNCTION SPACE REPRESENTATION OF STOCHASTIC
LOAD PROCESS

Let us assume that the load of power systems, D(t), over
t ∈ T is defined on a filtered probability space, (Ω,F ,P,F),
with the continuous sample space Ω, the set of events F , the
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Fig. 1. Load trajectory: a) pointwise model, b) function space model

probability measure P, and the filtration F. The continuous-
time trajectory Dω(t) denotes a realization ω of the sample
space Ω. Let us subdivide the modeling horizon T into I inter-
vals Ti=[ti, ti+1),→ T =∪I−1

i=0 Ti, with lengths Ti= ti+1− ti,
and construct a subset of basis functions formed by the
Bernstein polynomials of degree Q in each interval Ti, forming
a spline function space e(Q)(t) = (e

(Q)
1 (t), . . . , e

(Q)
P (t))T to

represent the whole T , which contains P =(Q+1)I functions
with components defined as:

e
(Q)
i(Q+1)+q(t) = bq,Q

(
t− ti
Ti

)
, t ∈ [ti, ti+1), (1)

for i = 0, . . . , I−1; q = 0, . . . , Q, where bq,Q(t) represents
the Bernstein polynomials of degree Q defined as [24]:

bq,Q(t) =

(
Q

q

)
tq(1− t)Q−q, t ∈ [0, 1). (2)

The Bernstein function space e(Q)(t) guarantees the con-
tinuity of desired order at the internal points of intervals,
however, maintaining C1 continuity of the load trajectory
at connection points imposes constraints on the Bernstein
coefficients of adjacent intervals, which forms a new reduced-
order Bernstein function space w(Q)(t) = Me(Q)(t) with
dimension Z = (Q − 1)I + 2, where M is a Z × P linear
mapping matrix.

Here, we propose to represent the stochastic load process
D(t) on the Bernstein function space w(Q)(t) as follows:

D(t) = Bw(Q)(t), t ∈ T , (3)

where B = (B1, B2, . . . , BZ) is the Z-dimensional vector
of random variables representing the Bernstein coefficients of
projecting D(t) in w(Q)(t). The Bernstein coefficients in B
together form a multivariate distribution system with mean and
covariance functions µB and ΣB defined as:

µB = E[B], (4)

ΣB = E[(B− µB)T (B− µB)], (5)

where E[·] is the expected value operator.
Given the function space representation (3), we model the

probability measure P of the stochastic load process D(t) with
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the mean and covariance functions D(t) and cov(D(t), D(t′))
respectively calculated as follows:

D(t)=E[D(t)]=E[B]w(Q)(t)=µBw(Q)(t), t∈T , (6)
cov(D(t), D(t′))=E[(D(t)−D(t))(D(t′)−D(t′))]

= w(Q)T (t) E[(B− µB)T (B− µB)] w(Q)(t′)

= w(Q)T (t)ΣBw(Q)(t′), (t, t′)∈(T , T ), (7)

We wish to learn the stochastic load process (3) through
learning the mean and covariance functions D(t) and
cov(D(t), D(t′)). As apparent in (6) and (7), this boils down
to learning the mean and covariance functions µB and ΣB of
the Bernstein coefficients B, which is discussed next.

III. LEARNING THE STOCHASTIC LOAD PROCESS

In this section, we aim to adapt the Bayesian inference
method to learn the parameters µB and ΣB of the stochastic
load process D(t) given the past load observations as realiza-
tions of the process. In Bayesian inference, we first assume a
prior distribution over the parameters and then calculate the
posterior process, which is a conditional probability distribu-
tion conditioned on a set of noisy observations. The posterior
not only estimates the structure of the observed load data, but
is also used to estimate future load realizations.

Our primary task here is to estimate the mean and co-
variance of the Bernstein coefficients B. We may assume a
prior on B, e.g., multivariate normal distribution, and for-
mulate a maximum likelihood estimation problem to estimate
the posterior distribution, given the past observations of the
load process. The main drawback of this approach is that
the Z2 components of the covariance matrix ΣB would be
variables of the maximum likelihood problem, which would be
computationally burdensome (e.g., Z equals 50 for Bernstein
coefficients of degree 3 and 24 hourly spline model). In the
next section, we develop a Gaussian Process model, which en-
ables using the kernel trick [13] to formulate a computationally
efficient maximum likelihood problem with less variables.

A. Gaussian Process Prior on Stochastic Load Process

Gaussian Process (GP) is generalized multivariate Gaus-
sian distribution where the observations occur in continu-
ous time and any finite subset of the characterizing domain
also follows a Gaussian distribution. Here, we assume a GP
prior on stochastic load process D(t) over T , i.e., D(t) ∼
GP (D(t), cov(D(t), D(t′))). Given the function space rep-
resentation of D(t) in (3), Bernstein coefficients B would
inherit the Gaussian properties of D(t), and therefore form
a multivariate Gaussian distribution, i.e., B ∼ N (µB,ΣB).

The electricity load demonstrates recurring (e.g., daily)
patterns that should be appropriately taken into account by the
proposed GP load model. Covariance function is the crucial
part of the GP model, as it embeds features of the load
process (e.g., continuity, smoothness, and periodicity) that
we wish to learn. In addition, covariance function encodes
the nearness and similarity of the historical load data and
supports predicting the future values of load that are likely to
follow similar characteristics of the historical data. Therefore,

the choice of covariance function is important to reveal and
learn the underlying characteristics of the load process. We
propose the following kernel function k(t, t′) as the covariance
function of the GP load model:

cov(D(t),D(t′))= k(t, t′)

= σ2
d1 exp

(
− 1

l1
2 sin2 π(t− t′)

τ

)
+ σ2

d2 exp

(
−|t− t

′|2

l2
2

)
, (t, t′)∈(T , T ). (8)

The covariance function (8) includes two kernel functions
that embed the periodicity of load, smoothness and continuity,
as well as the increasing uncertainty and vanishing dependence
between the load realizations over time. More specifically, both
terms in (8) are squared exponential functions, which ensure
the continuity and smoothness of any order, where l1, l2, σ2

d1
and σ2

d2
respectively represent the characteristic length-scales

and the variances for the two terms. In addition, the first term
in (8) is a periodic squared exponential that incorporates the
periodicity of the load, where τ indicates the period of the load
process. As the main focus of the present work is short-term
modeling of load (e.g., day-ahead), the first term would only
capture the daily pattern of load, though the implementation
of weekly and seasonal periodicity is not more challenging
and could be achieved by enhancing the covariance function
in (8) with additional periodic terms. The second term in (8) is
a pure squared exponential kernel function that tends to zero
for the future points far from the observation points, i.e., |t−
t′| � 0, implying the increasing vagueness and uncertainty of
load prediction for fairly distant future. The periodic squared
exponential term in (8), though, is periodic and repeats the
same mean and covariance for each period.

B. Estimating the Posterior Gaussian Process

Here we aim to obtain the posterior GP load model by esti-
mating the parameters of the mean and covariance functions of
the GP prior, given the past observations of the load process.

Let Ω̂ be the set of past realizations of load during compa-
rable periods of the modeling time horizon T (e.g., specific
day of week). The discrete sample space Ω̂ represents an
approximation of the actual continuous sample space Ω of
the proposed load model. Let the continuous-time trajectory
Dω(t) denote a realization ω ∈ Ω̂ of the load process,
the N -dimensional vector Dω(tn) = (Dω(t1), . . . , Dω(tN ))
represent the noisy discrete-time samples of such realization at
discrete times tn, n ∈ {1, . . . , N} over T , and the (N × |Ω̂|)-
dimensional vector Dω = (D1(tn), . . . ,D|Ω̂|(tn)) represent
the vector of all noisy samples of all realizations, that is:

Dω = D + ε, (9)

where D = (D(tn), . . . ,D(tn)) is a N × |Ω̂|-dimensional
vector in which D(tn) = (D(t1), . . . , D(tN )) is value of the
proposed load model evaluated at N sampling points; and
ε = (ε1(tn), . . . , ε|Ω̂|(tn)) is a N × |Ω̂|-dimensional vector
in which εω(tn) = (εω(t1), . . . , εω(tN )) is the vector of
independent identically distributed Gaussian noises with zero
mean and σ2 variance, i.e., εω(tn) ∼ N (0, σ2). Given that
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every finite subset of any GP has a Gaussian distribution,
N × |Ω̂| samples in the realization sample vector Dω form a
multivariate Gaussian probability distribution with mean value
µDω

and covariance matrix ΣDω
defined as:

µDω
= E[Dω] = E[D] + E[ε] = µD, (10)

ΣDω
= E[(Dω − µDω

)T (Dω − µDω
)]

= E[(D + ε− µD)T (D + ε− µD)]

= E[(D− µD)T (D− µD)] + E[εT ε]+

E[εT ]E[(D− µD)] + E[(D− µD)T ]E[ε]

= K(θ) + σ2I, (11)

where µD is a N × |Ω̂|-dimensional vector of mean values,
and K(θ) is the covariance function of the load process D(t)
evaluated at the sampling points:

µD = (D(tn), . . . ,D(tn)), (12)

K(θ) = [k(tn, tn′)], ∀n, n′ ∈ {1, . . . , N × |Ω̂|}, (13)

where θ = {l1, σ2
d1
, l2, σ

2
d2
, τ} is the vector of hyper-

parameters associated with the kernel function (8).
We formulate a maximum likelihood estimation problem to

estimate the hyper-parameters of the GP model, i.e., θ, µD,
σ2. In order to further reduce computational burden of the
problem and without loss of generality, we assume that the
mean vector µD is constant over the samples, i.e., µD = µ1,
where µ is the mean value and 1 is a N × |Ω̂|-dimensional
vector of ones. The maximum likelihood estimation problem,
formulated in (14), maximizes the log marginal likelihood with
respect to the hyper-parameters given the load realizations Dω:

max
θ,µD,σ

2

− 1

2
(Dω−µD)

(
K(θ)+σ2I

)−1
(Dω−µD)

T

− 1

2
log |K(θ)+σ2I| − N × |Ω̂|

2
log(2π), (14)

where I is the (N × |Ω̂|) × (N × |Ω̂|) identity matrix. The
load realizations Dω only appear in the first term of (14)
that optimizes the data fit. The second term, however, is
independent of the realizations and represents the complexity
penalty. The first and second terms together make a trade-off
between fitting the realizations and complexity of solution,
obviating the overfitting problem and providing the fittest and
simplest GP model. The last term in (14) is merely a scaling
factor. The solution of the maximum likelihood estimation
problem in (14) would provide the optimal estimates of the
hyper-parameters given the load realizations, which could then
be used to form the posterior GP load model in terms of the
mean vector, and covariance function k(t, t′) in (8).

In order to calculate the components of ΣB, i.e., the
covariance matrix of the Bernstein coefficients in (3), we select
an arbitrary set of evaluation times ts, s ∈ {1, . . . , S} over T
and evaluate the covariance function k(t, t′) in (8) at these
times. We then enforce the equality of the covariance function
values in (8) with the right-hand-side covariance representation
in (7), and form a set of linear equations where the unknowns
are the components of ΣB:

Ks(θ∗) = WsTΣBWs, (15)

where θ∗ is the optimum estimate of θ, Ks(θ∗) =
[k(ts, ts′)], ∀s, s′ ∈ {1, . . . , S}, Ws ≡ W(ts) =(
w(Q)(t1), . . . ,w(Q)(tS)

)
. In order to have a full-rank set

of equations in (15), the choice of the evaluation times τs
for forming the equations should meet the following two
conditions: 1) number of evaluation times S should be equal to
Z, 2) the evaluation times need to be distributed over T such
that Q − 1 samples for the first and last intervals (i.e., i = 0
and i = I − 1), and Q − 2 samples for the rest of intervals
be allocated. Solving the full-rank set of linear equations (15),
one can calculate the covariance matrix ΣB as follows:

ΣB =
(
WsT

)−1

Ks (Ws)
−1
. (16)

Note that in the proposed estimation method in this section,
there are only seven hyper-parameters to optimize in the max-
imum likelihood estimation problem (14) and finally calculate
ΣB in (16), while in the direct approach we would have all
the Z2 + 2 components of ΣB as variables of the maximum
likelihood estimation problem. This considerably reduces the
computation burden of estimating the proposed load process.

C. Derivation of Predictive Gaussian Process
After solving the maximum likelihood estimation problem

in (14) and forming the posterior GP load model using
the optimal estimation of hyper-parameters, we can utilize
the posterior GP to form the joint distribution of the load
realizations Dω and the load values at future test times
t∗m, m ∈ {1, . . . ,M}, D∗ = (D(t∗1), . . . , D(t∗M )) as follows:[

DT
ω

D∗T

]
∼N

([
µTD
µ∗D

T

]
,

[
K(θ∗) + σ2

nI K∗(θ∗)

K∗T (θ∗) K∗∗(θ∗)

])
, (17)

where µ∗D = µ1M ; K∗(θ∗) = [k(tn, t
∗
m)], ∀n ∈

{1, . . . , N × |Ω̂|}, ∀m ∈ {1, . . . ,M}; and
K∗∗(θ∗) = [k(t∗m, t

∗
m′)], ∀m,m′ ∈ {1, . . . ,M}.

Then we derive the posterior distribution of D∗, i.e.,
p(D∗|t1, . . . , tN×|Ω̂|, t∗1, . . . , t∗M ,Dω, (θ, µ, σ

2)), which is
a Gaussian with a M -dimensional mean vector µ∗ and a
M ×M covariance matrix Σ∗ defined as follows:

µ∗ = µ∗D + (Dω − µD)
(
K(θ∗) + σ2I

)−1
K∗(θ∗), (18)

Σ∗ = K∗∗(θ∗)−K∗T (θ∗)
(
K(θ∗) + σ2I

)−1
K∗(θ∗). (19)

The final goal here is to find the Bernstein coefficients of the
predictive mean denoted as µ∗B, and the associated covariance
matrix denoted as Σ∗B. In order to derive µ∗B and Σ∗B, we need
to substitute in (18) and (19) the values of K(θ∗), K∗(θ∗),
and K∗∗(θ∗) in terms of ΣB from (7) as follows:

µ∗=µ∗D+(Dω−µD)
(
WTΣBW+σ2I

)−1(
WTΣBW∗), (20)

Σ∗= W∗TΣBW∗

−
(
WTΣBW∗)T(WTΣBW+σ2I

)−1(
WTΣBW∗), (21)

where W =
(
w(Q)(t1), . . . ,w(Q)(tN×|Ω̂|)

)
and W∗ =(

w(Q)(t∗1), . . . ,w(Q)(t∗M )
)

are respectively Z×(N×|Ω̂|) and
Z ×M matrices. Now, factoring W∗, we recast (20) as:

µ∗=
(
µ1Z+(Dω−µD)

(
WTΣBW+σ2I

)−1
WTΣB

)
W∗

= µ∗BW∗, (22)
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and derive the predictive mean of Bernstein coefficients as:

µ∗B = µ1Z+(Dω−µD)
(
WTΣBW+σ2I

)−1
WTΣB. (23)

Similarly, factoring W∗T and W∗, we recast (21) as:

Σ∗ = W∗T (ΣB −ΣBW
(
WTΣBW+σ2I

)−1
WTΣB

)
W∗

= W∗TΣ∗BW∗, (24)

and derive the predictive covariance of the Bernstein coeffi-
cients as follows:

Σ∗B = ΣB −ΣBW
(
WTΣBW+σ2I

)−1
WTΣB. (25)

The mean vector (23) and covariance matrix (25) together
form the predictive distribution of the Bernstein coefficients
of the proposed GP load model, i.e., D∗ ∼ N (µ∗B,Σ

∗
B).

IV. NUMERICAL RESULTS

In this section, we use the hourly electricity load data of
CAISO for 10 consecutive Tuesdays, from Dec. 5, 2017 to
Feb. 13, 2018 [25] as the load realizations, for estimating the
proposed load process projected on the function space spanned
by Bernstein polynomials of degree 3 (Q = 3). The estimated
model is then used to predict the electricity load of Feb. 20,
2018. The GPML toolbox [26] is utilized to implement the
kernel function in (8), solve the maximum likelihood problem
in (14), and derive the optimal hyper-parameters. The GPML
uses the iterative conjugate gradient method to solve the
maximum likelihood problem, as a fast and computationally
efficient numerical solution method, which alleviates the heavy
matrix calculations for a large number of observations.

Choosing appropriate initial values for the hyper-parameters
is important for solution of the maximum likelihood esti-
mation. We set the initial value of τ at 24, since the load
process approximately experiences daily periods. We also set
the initial value of µ to 24, 000, which is the approximate
average of the realizations. Further, in order to initialize the
rest of the hyper-parameters, we first evaluate the log marginal
likelihood in (14) at a limited set of hyper-parameter samples,
determine the optimal subset of hyper-parameter samples that
maximize the function, and use this subset as the initial guess
for the conjugate gradient method. The initial values of the
hyper-parameters, and the resulting estimated values using the
solution of the maximum likelihood estimation are shown in
Table I. As the optimal estimate of σd1 is almost twice the
optimal estimate of σd2 , the periodic term contributes more
in the kernel function formation compared to the exponential
term. Also, as expected, the optimal load process period is
very close to its initial value of 24. In Fig. 2, we aim to
investigate the sensitivity of log marginal likelihood to each
of the hyperparameters l1, l2, σd1 , and σd2 separately, where
the rest are set to their initial values. In Fig. 2, the log marginal
likelihood is more sensitive to l1 and σd1 , compared to l2 and
σd2 . Besides, among all the hyper-parameters, l2 has the least
impact on the log marginal likelihood.

The optimal estimates of the hyper-parameters are used to
form the posterior and predictive GP models. The estimated
GP model is then used to forecast the electricity load of the
next Tuesday after the training data (Feb. 20, 2018). The

TABLE I
INITIAL AND OPTIMAL HYPER-PARAMATERS

Hyper-parameters 
1d  

2d   
1l  2l    

Initial Values 1500 200 50 0.5 4.5 24.00 24000.00 

Optimal Values 1699.65 790.83 226.96 0.42 3.25 24.03 24000.00 
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hourly training data, the continuous-time load forecast, the
actual 5-min load of the forecast day, as well as the %99
uncertainty envelope around the forecasted load trajectory are
shown in Fig. 3. The continuous-time load forecast trajectory
is drawn using Bernstein coefficients of the predictive dis-
tribution derived in (23), which smoothly varies over time,
where the associated mean absolute percentage error (MAPE)
is equal to %3.5. The uncertainty envelope engulfs a good
share of the hourly load realizations and the actual 5-min load
of the forecast day is barely out of the uncertainty envelope.
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The posterior covariance of the Bernstein coefficients are
drawn in Fig. 4-(a) and (b), respectively, for one training day
and the forecast day. Using Bernstein polynomials of degree
3, the reduced-order Bernstein function space that embeds the
C1 continuity has (3 − 1) ∗ 24 + 2 = 50 coefficients and
the posterior covariance matrix of the Bernstein coefficients
derived in (25) is of order 50 × 50. The magnitude of the
covariance for the training day is obviously much lower than
that of the forecast day. The periodic term of the kernel
function (8) is clearly reflected in Fig. (25)-(a), where the
covariance tends to repeat the same shape at the both ends (the
previous and next realizations). Also, diagonal components
of the covariance matrix monotonically increase with the
increasing order of Bernstein coefficients, which reflects the
increasing uncertainty of the data over time that is captured by
the pure exponential term in the kernel function. In Fig. (25)-
(b), since no observations are available in the forecast day, the
magnitude of covariance increases considerably, impact of the
exponential term of kernel function becomes dominant, and
impact of the periodic term is less discernible.
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Fig. 4. Posterior covariance of the Bernstein coefficients (a) calculated
at a training day (b) calculated at the prediction day

V. CONCLUSION

In this paper, a continuous-time stochastic process model
is proposed to characterize the variability and uncertainty of
electricity load. The load process is projected on a reduced-
order Bernstein function space with embedded C1 continuity,
a GP prior is imposed on the associated coefficients, and
the posterior distribution of the coefficients are derived using
past observations of the load process. The kernel trick is
applied to reduce the computational burden of estimating the
model, where a covariance function is designed to capture
the periodicity and smoothness of the load as well as the
increasing uncertainty over time. The numerical studies show
promising performance of the proposed model to learn the
behavior and estimate the future process of the CAISO load.
The proposed model uniquely predicts the continuous-time

mean value and uncertainty envelopes of future loads, which
inherently embeds information on continuous-time variations
and the associated ramping requirements of the load.
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